

CALCULATION POLICY

MELLERS PRIMARY SCHOOL

July 2021

CALCULATION POLICY STATEMENT

Mathematics equips pupils with a uniquely powerful set of tools to understand and adapt to change the world. These tools include logical reasoning, problem-solving skills and the ability to think in abstract ways.

The ability to calculate is a fundamental skill not only for school but for the pupils to use throughout their adult lives. It is, therefore, essential that all pupils leave Key Stage Two being able to use the most efficient mental and written calculations strategies possible. This policy outlines the development of these skills through the use of concrete representations into the abstract representations needed to calculate with larger numbers.

At the heart of the policy, is the importance that the pupils have a deep understanding of number and calculations rather than the ability to follow a process.

AIMS

The mathematics teaching at Mellers Primary is aspirational as we aim to equip all pupils with the skills required to not only be successful during their time at school but also within the wider world. We use a mastery approach to the teaching of mathematics to ensure quality and consistency of teaching throughout the school. In the foundation stage and key stage one, we use resources from the 'Mastering Number' programme.
In line with the National Curriculum (revised 2104), we expect all pupils to:

- Become fluent in the fundamentals of mathematics
- Reason mathematically
- Solve increasingly sophisticated problems

We also expect that the majority of pupils' progress through the curriculum at broadly the same rate.

MENTAL STRATEGIES

It is important that pupils develop a secure understanding of how to solve problems involving all four operations mentally. The use of a mental strategy should always take precedent over that of a written method and pupils should be taught how to choose the correct strategy in their everyday lives. In order to achieve this there are a set of guidelines setting out the expectation at each year group.

Addition Stage One

Concrete
 - Manipulate a range of real objects.

- Rearrange partition and recombine groups of real objects.
- Notice and compare size of groups.
- Objects for counting should be of the same type e.g. all bears, or all dinosaurs

Towards Written Calculation

- Adults model representations of pupils' ideas on paper
- Children's own jottings based on real objects

저우ㄹㅜㅜ

Towards Written Calculation

- Children's jottings reflect abstract representations of objects e.g. tallies, spots

- Adults model abstract representations

- Use of part-part-whole model

Expected Written Method

- Adults model conventional number representations
- Variety of maths symbols displayed in the environment.

Addition Stage Two

Concrete

- Manipulate apparatus that represent real objects e.g. cubes, Base 10, Cuisenaire, bead strings

- Place objects in a line and on a number line.
- Estimate and check size of groups
- Rearrange, partition and recombine groups of objects and noticing what happens.

- Use pennies to calculate money
- Begin to rename objects e.g. 3 bananas and 4 apples is equal to 7 pieces of fruit

Expected Written Method

- Adults model horizontal recording of calculation and vocabulary

$$
\begin{aligned}
& 5+4=9 \\
& 9=4+5
\end{aligned}
$$

- Adults model = as 'the same as'

- Represent manipulatives on a number line
\qquad
$9 \quad 10 \quad 11 \quad 12$

Concrete

- Use Cuisenaire and Base Ten to represent two- and three-digit numbers

- Begin to introduce decimals and fractions using real objects

- Use coins and notes to calculate money

Addition Stage Five

Concrete

- Use Base Ten and Cuisenaire to exchange once 10 is reached. Explain this as renaming 10 ones can also be called 1 ten.
- Use Cuisenaire and Base Ten to add fractions with the same denominator and decimals to one decimal place

- Use coins and notes when calculating money totals using decimal places

Towards Written Calculation

- Use place value cards to represent twoand three-digit numbers

- Represent Base Ten and Cuisenaire on paper

Expected Written Method

- Children begin to record by partitioning and recombining numbers

$$
\begin{array}{r}
52+43=95 \\
50+40=90 \\
2+3=5 \\
90+5=95
\end{array}
$$

- Adults begin to model vertical addition without crossing ten

52
$\begin{array}{r}+43 \\ \hline 95\end{array}$

Towards Written Calculation

- Use place value cards to represent decimal numbers and money

- Use coins to represent money
- Add fractions with the same denominator

Expected Written Method

- Children use vertical addition to bridge 10

69
$+23$
1

$$
92
$$

- Children begin to use number lines to calculate using negative numbers

$\begin{array}{llll}-1 & 0 & 1 & 2\end{array}$
- Children use vertical addition to calculate amounts of money

Addition Stage Six

Concrete

- Use manipulatives to add fractions with a different denominator. Explain the process as renaming the denominator to make it common to both fractions.
$1 / 4+2 / 3=3 / 12+8 / 12=11 / 12$
We can rename the denominator as 12

Towards Written Calculation

- Add fractions with the same denominator mentally

Expected Written Method

- Children are proficient in using vertical addition for whole numbers and decimals
12.53
+19.28
$1 \quad 1$
31.81
- Add fractions with by renaming one denominator

$$
\begin{aligned}
& \frac{5}{9}+\frac{2}{3} \\
& \frac{5}{9}+\frac{\square}{\square}=
\end{aligned}=
$$

- Add fractions by renaming all denominators
- Add mixed number and improper fractions

Concrete

- Manipulate a range of real objects.

- Rearrange partition and recombine groups of real objects.
- Notice and compare size of groups.
- Objects for counting should be of the same type e.g. all bears, or all dinosaurs

Towards Written Calculation

- Adults model representing ideas on paper
- Children's own jottings based on real objects

Expected Written Method

- Adults model conventional number representations
- Variety of maths symbols displayed in the environment.

Subtraction Stage Two

Concrete

- Manipulate apparatus that represent real objects e.g. cubes, Base 10, Cuisenaire, bead strings

- Place objects in a line and on a number line.
- Estimate and check size of groups
- Begin to rename objects e.g. 3 bananas and 4 apples is equal to 7 pieces of fruit
- Rearrange partition and recombine groups of objects and noticing what happens.

- Use pennies to calculate money

Towards Written Calculation

- Children's jottings to reflect abstract representations of objects e.g. tallies, spots
- Adults model abstract representations

○ $\quad 5-3=2$

- - No
- Use of part-part-whole model

xpected Written Method
- Adults model horizontal recording of calculation and vocabulary

$$
\begin{aligned}
& 9-4=5 \\
& 5=9-4
\end{aligned}
$$

- Adults model = as 'the same as'

Concrete

- Use Cuisenaire and Base Ten on a number line
\qquad
- Use Cuisenaire and Base Ten to represent two digit numbers

- Use coins to calculate money

Towards Written Calculation

- Use place value cards to partition two digit numbers.

- Represent Base Ten and Cuisenaire on paper

23

Expected Written Method

- Represent Multilink, Base Ten, Cuisenaire on a number line
\qquad
$\begin{array}{llll}98 & 7 & 6 & 5\end{array}$

$12 \quad 22 \quad 23$
- Record calculations horizontally and 'read' using correct vocabulary

$$
\begin{gathered}
9-5=4 \\
23-11=12
\end{gathered}
$$

O Children begin to subtract two digit numbers with apparatus

$$
45-23=22
$$

Subtraction Stage Four

Concrete

- Use Cuisenaire and Base Ten to represent two and three digit numbers

- Begin to introduce the subtraction of decimals and fractions using real objects

Use coins and notes to calculate money

Towards Written Calculation

- Use place value cards to represent two and three digit numbers

- Represent Base Ten and Cuisenaire on paper

Expected Written Method

- Children begin to record by partitioning the second number

$$
\begin{aligned}
93-47 & =52 \\
93-7 & =86 \\
86-40 & =46
\end{aligned}
$$

- Adults model vertical subtraction

Multiplication Stage Four

○

Towards Written Calculation

- Children proficient in recalling multiplication facts to 12×12
- Children know the effect of multiplying by 0 and 1

Expected Written Method

- Use an expanded method for multiplication to multiply a two or threedigit number by a single digit

$30+8$		38 \times $\times \frac{7}{210}$ 210
$30 \times 7=210$	$\underline{56}$	
56	$8 \times 7=56$	$\underline{266}$

Multiplication Stage Five

	Understand multiplying by fractions as repeated addition	
		-111
		-1111
		$\square 11$

- Understand the effect of multiplication on fractions using the word 'of'
$2 / 3 \times 2=$ two thirds of two
- Children use an efficient written method to multiply (up to four) digit numbers by two-digit numbers.
- Multiply fractions by integers
- Multiply two fractions by multiplying the numerators and denominators and simplifying
$\frac{2}{3} \times \frac{3}{4}=\frac{6}{12}=\frac{1}{2}$
$\frac{2}{2} \times \frac{3}{6}=\frac{6}{12}=\frac{1}{2}$

Division Stage One

Concrete

- Manipulate a range of real objects.

- Rearrange, partition and recombine groups of real objects.
- Sort and group sets of objects e.g. all bears or all dinosaurs

Division Stage Two

Concrete

- Introduce language and concepts of division in real life contexts e.g. pairing up socks, sharing sweets, grouping objects

Towards Written Calculation

- Adults model representing ideas on paper
- Children's own jottings based on real objects

Towards Written Calculation

- Children count in multiples of 2,3,5 and 10 and recognise why these patterns in counting occur using Cuisenaire, 100 squares, number lines
- Children's jottings to reflect abstract representations of objects e.g. tallies, spots

- Adults model abstract representations

Expected Written Method

- Adults model conventional number representations
- Variety of maths symbols displayed in the environment.

Expected Written Method

- Adults model horizontal recording of calculation and vocabulary related to groups of and lots of

$$
\begin{aligned}
& 15 \div 5=3 \\
& 15 \div 3=5
\end{aligned}
$$

